
On the Simulation of Longitudinal Discrete

Data with Specified Marginal Means and

First-Order Antedependence

Matthew W. Guerra and Justine Shults

Summary. We propose a straightforward approach for simulation of discrete

random variables with overdispersion, specified marginal means, and product

correlations that are plausible for longitudinal data with equal, or unequal,

temporal spacings. The method stems from results we prove for variables

with first-order antedependence and linearity of the conditional expectations.

The proposed approach will be especially useful for assessment of methods

such as generalized estimating equations, which specify separate models for

the marginal means and correlation structure of measurements on a subject.
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1. INTRODUCTION

Longitudinal discrete data are commonly encountered in research. For

example, a study might record the monthly number of kidney transplants

performed in each of a large number of centers, along with the portion that

were from live donors.

Semi-parametric approaches, such as generalized estimating equations

(Liang and Zeger 1986), are especially attractive for the analysis of dis-

crete data, as the likelihoods of discrete random variables for a likelihood

based approach can be very complex. However, construction of the underly-

ing distribution is useful to evaluate methods, such as generalized estimating

equations, if the likelihoods can be used to simulate realizations of random

variables with the same features that were specified by the semi-parametric

approach.

Quite a few methods have been proposed for the simulation of correlated

binary variables, including approaches by Emrich and Piedmonte (1991),

Qaqish (2003), and those reviewed by Farrell and Rogers-Stewart (2008).

However, fewer authors considered correlated discrete random variables (and

in particular, count variables) that are not Bernoulli. Gange (1995) used it-

erative proportional fitting (IPF) to simulate correlated categorical variables.

Schulman et al. (1996) described how the linear programming (LP) method

of Lee (1993) for simulation of dichotomous variables could be generalized

for the multi-category case, but also cautioned that neither the IPF method
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or the LP method is satisfactory for simulation of a large number of random

variables. Other methods are described in Devroye (1986).

We propose an approach that previously was unavailable, for the sim-

ulation of discrete variables with specified marginal means, overdispersion

that is a common feature of discrete data (Efron 1992), and product correla-

tions that are plausible for longitudinal trials (Nuñez-Antón and Woodworth

1994). The proposed approach is straightforward for simulation of categor-

ical or count variables, and its ease of implementation does not necessarily

lessen with an increase in the number of simulated variables.

2. SIMULATION APPROACH

2.1 Results

The following results will be used to construct likelihoods that allow for

simulation of random variables Y1, . . . , Yn with specified marginal means,

overdispersion, and product correlations.

Theorem 2.1. Let E(Yj | Yj−1) be linear in Yj−1, so that E(Yj | Yj−1) =

aj + bjYj−1 (j = 2, . . . , n). Then,

E (Yj | Yj−1) = µj + Cj−1,jσj/σj−1 (Yj−1 − µj−1) , (2.1)

where µj = E(Yj); Cj−1,j = corr(Yj−1, Yj); and σj
2 = var(Yj); furthermore,

σj
2 = 1/(1− C2

j−1,j)E{var(Yj | Yj−1)} (j = 2, . . . , n). (2.2)

Proof. Utilizing results from Christensen (1997), the conditional expec-

tation E (Yj | Yj−1) is the function of Yj−1 that minimizes the squared-error
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loss, E (Yj − f(Yj−1))
2 , while the best linear predictor of Yj based on Yj−1

is the linear function of Yj−1 that minimizes the squared-error loss. If the

conditional expectation is linear, it will also be the best linear predictor and

can then be expressed as in Equation (2.1), which was obtained using the

expression for the best linear predictor (Christensen 1997, p.108). The result

can also be shown directly. Next, as a consequence of (2.1), the marginal

means E(Yj) = E{E (Yj | Yj−1)} = µj. Furthermore, from the variance de-

composition formula and (2.1)

σj
2 = E{var(Yj | Yj−1)}+ var{E(Yj | Yj−1)}

= E{var(Yj | Yj−1)}+ var{µj + Cj−1,jσj/σj−1(Yj−1 − µj−1)}

= E{var(Yj | Yj−1)}+ C2
j−1,jσj

2. (2.3)

Solving (2.3) for σj
2 then yields (2.2), so that the proof is complete.

Theorem 2.2. Consider random variables Y1, . . . , Yn with first order antede-

pendence, so that each Yj given the immediate antecedent Yj−1, is indepen-

dent of all further preceding variables (Gabriel 1962). Then, if E(Yj | Yj−1)

(j = 2, . . . , n) have linear form (2.1), corr(Yj, Yj+t) = Cj,j+t is a product of

the adjacent correlations, so that

corr(Yj, Yj+t) =

j+t−1∏
w=j

Cw ,w+1 (j = 1, . . . , n− 1; t = 1, . . . , n− j). (2.4)

Proof. We use induction to prove this result. For the first step,

E(Yj Yj+2) = E {E (Yj, Yj+2 | Y1, . . . , Yj+1 ) }

= E {Yj E (Yj+2 | Y1, . . . , Yj+1 ) }

= E {Yj (µj+2 + Cj+1,j+2σj+2/σj+1 (Yj+1 − µj+1)) }.
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Hence, cov(Yj, Yj+2) = Cj+1,j+2σj+2/σj+1cov(Yj, Yj+1), so that corr(Yj, Yj+2)

= Cj,j+1Cj+1,j+2. Next, we assume that corr(Yj, Yj+k) =
∏j+k−1

w=j Cw ,w+1.

Using a very similar argument as for the first step, it is straightforward

to show that cov(Yj, Yj+k+1) = Cj+k,j+k+1σj+k+1/σj+kcov(Yj, Yj+k), so that

corr(Yj, Yj+k+1) =
∏j+k

w=j Cw ,w+1 and the proof is complete.

It is also interesting to note that if the conditional expectations are linear

and the correlations have product form (2.4), then the conditional expecta-

tions can be expressed as in (2.1). A proof is provided in Appendix A.1.

Different parameterizations Cw,w+1 = αθw in (2.4) yield structures that

were implemented by Nuñez-Antón and Woodworth (1994), Shults and Cha-

ganty (1998), and Zimmerman and Nuñez-Antón (2010): θw = 1 yields a

first-order autoregressive structure that was also implemented for binary vari-

ables by Zeger et al. (1985) and Qaqish (2003); θw = tw+1 − tw (where tw is

the timing of Yw) yields a Markov structure; and θw = (tw+1
γ − tw

γ)/γ yields

a generalized Markov structure. Letting Cw,w+1 = αk yields an unstructured

product correlation matrix that, in addition to the first-order autoregressive

and Markov structures, was implemented for simulation and maximum likeli-

hood based analysis of longitudinal Bernoulli data by Guerra et al. (2012). To

achieve positive-definite matrices, the following restrictions must be satisfied:

−1 < α < 1 for the AR(1); 0 < α < 1 and tk+1 − tk ≥ 1 (k = 1, · · · , n − 1)

for the Markov; 0 < α < 1 and γ > 0 for the generalized Markov; and

0 < αk < 1 (k = 1, · · · , n− 1) for the AD(1) structure.
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2.2 Constructed likelihoods

We construct joint distributions of Y1, . . . , Yn for specified marginal means

µ1, . . . , µn and adjacent correlations C1,2, . . . , Cn−1,n, assuming first-order an-

tedependence, linearity of the conditional expectations, and the same distri-

bution for Y1 and for Yj given Yj−1 (j = 2, . . . , n). The details for each

distribution are provided in the Appendix.

Conditional Binomial: Specify the distribution of Y1 as binomial with

µ1 = N1p1, so that σ1
2 = N1p1q1, where q1 = 1 − p1. Then, the conditional

distribution of Yj given Yj−1 is specified as binomial with mean given by (2),

with µj = Njpj, and σj
2 as defined in Equation (2) (j = 2,. . . ,n). For this

distribution,

σj
2 = Njpjqj/{1 + C2

j−1,j (1−Nj)/Nj} (j = 2, . . . , n), (2.5)

where qj = 1−pj; the Yj are therefore over-dispersed relative to the binomial

distribution if Nj > 1, and Cj−1,j ̸= 0, because in this case σj
2 = ϕjNjpjqj,

where ϕj > 1. Also, note that σj
2 > 0 if −1 < Cj−1,j < 1 in (2.5). The

constructed distribution will be valid if Nj, pj and Cj−1,j satisfy the following:

Nj is an integer ≥ 1; 0 < pj < 1 (j = 1, . . . , n);

0 < Njpj + Cj−1,j Nj−1 qj−1 σj/σj−1 < Nj (j = 2, . . . , n); (2.6)

0 < Njpj − Cj−1,j Nj−1 pj−1 σj/σj−1 < Nj (j = 2, . . . , n); (2.7)

and Cj−1,j (j = 2, . . . , n) satisfy the constraints required to achieve a positive

definite correlation matrix.

For the conditional Bernoulli distribution (Nj = Nj−1 = 1; j = 2, . . . , n),

there is no overdispersion, and (2.6) and (2.7) reduce to the constraints for

the bivariate Bernoulli distribution (Prentice 1988, p. 1046) .
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Conditional Poisson: The distribution of Y1 is specified as Poisson with

µ1 = λ1 and σ1
2 = λ1. Then, the conditional distribution of Yj given Yj−1 is

specified as Poisson with conditional mean given by (2.1), and σj
2 as defined

in Equation (2) (j = 2,. . . ,n). For this distribution,

σj
2 = λj/(1− C2

j−1,j) (j = 2, . . . , n); (2.8)

the Yj are therefore overdispersed relative to the Poisson distribution if

Cj−1,j ̸= 0, because in this case σj
2 = ϕjλj, where ϕj > 1. The constructed

distribution will be valid if λj ≥ 0 (j = 1, . . . , n);

λj − λj−1Cj−1,jσj/σj−1 > 0 (j = 2, . . . , n); (2.9)

and Cj−1,j (j = 2, . . . , n) satisfy the constraints required to achieve a posi-

tive definite correlation matrix.

2.3 Simulation approach

The following algorithm can be easily applied to simulate realizations

y1, . . . , yn of Y1, . . . , Yn with a joint distribution of the type described in

Section 2.2.

Step One: Specify a particular distribution for Y1 and for Yj given Yj−1

(j = 2, . . . , n). Step Two: Specify marginal means µ1, . . . , µn and adjacent

correlations C1,2, . . . , Cn−1,n. As shown in Theorem 2.2, different choices for

the adjacent correlations Cj−l,j in (2.1) will induce different product corre-

lation structures. Step Three: Check that the specified marginal means and

adjacent correlations satisfy the necessary constraints for the assumed distri-

butions. If not, change the values of the marginal means, or choose correla-
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tions that are closer to zero. Step Four: Simulate a realization from Y1 from

the specified distribution for Y1 and then from Yj given Yj−1 (j = 2, . . . , n).

To obtain longitudinal data that comprise repeated measurements on

each of m independent subjects, the algorithm can be applied successively

to obtain ni measurements on subject i (i = 1, . . . ,m). Covariates can also

be incorporated in the definition of the marginal means. For example, for

µj = Njpj (conditional Binomial), we might specify a logistic model with

logit(pj) = x
′
jβ for covariates xj and corresponding regression parameter β.

Or, for µj = λj (conditional Poisson), we might specify λj = exp(x
′
jβ).

2.4 An Example of a Constructed Distribution

The simulation approach does not require the enumeration of all possible

realizations of the random variables and the probability of each realization.

However, it is instructive to demonstrate the construction of one joint distri-

bution. We construct the joint distribution of Y1, Y2, Y3, assuming the condi-

tional binomial distribution, with marginal means µ1 = 2.4 (for N1 = 3 and

p1 = 0.8); µ2 = 0.4 (for N2 = 1 and p2 = 0.4); and µ3 = 0.6 (for N3 = 2 and

p3 = 0.3). In addition, the AD(1) structure is specified, with adjacent corre-

lations C1,2=0.2 and C2,3 = 0.3. These values satisfy the constraints provided

in (2.6) and (2.7). Then, since the assumed distribution of Y1 is binomial,

σ1
2 = N1p1q1 = 0.48. Next, using (2.5), σ2

2 = 0.24 and σ3
2 = .43979058.

Next, Yj given Yj−1 are assumed to be binomial with E(Yj|Yj−1) = Njpj
∗

calculated using (2.1), so that pj
∗ = 1/Nj [µj + Cj−1,jσj/σj−1(Yj−1 − µj−1)]

for j = 2, 3. Table E1 provided in Appendix A.4 lists all possible realizations

of (Y1, Y2, Y3) and the associated probabilties pr(Y1 = y1, Y2 = y2, Y3 = y3) =
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pr(y1, y2, y3) =(
N1

y1

)
p1

y1q1
N1−y1

(
N2

y2

)
p2

∗y2q2
∗N2−y2

(
N3

y3

)
p3

∗y3q3
∗N3−y3 . (2.10)

In Appendix A.4, we also verify that this constructed distribution is valid;

furthermore, by summing over the appropriate functions of pr(y1, y2, y3), we

do indeed obtain the assumed values for the marginal means and adjacent

correlations, in addition to the values of σj
2 (for j = 1, 2, 3) and corr(Yj, Yk)

(for j = 1, 2, 3 and k = 1, 2, 3) that we expect based on Theorem 2.1 and

Proposition 2.2, respectively.

3. DEMONSTRATION

We now demonstrate the proposed approach to estimate the power to

detect a difference between two treatment groups over time. Our earlier

notation is readily generalized for longitudinal data that comprise realizations

yij of ordered discrete random variables Yij on subject i (j = 1, . . . , ni). We

assume the marginal means E(Yij) = µij are a function of x
′
ijβ = ηij, where

ηij = β0xij1 + β1xij2 + β2xij3 + β3xij4, (3.1)

where x
′
ij = (xij1, xij2, xij3, xij4); xij1 = 1; xij2 is an indicator variable for

treatment group, which equals 1 for subjects treated with a treatment A and

0 for treatment B; xij3 represents time, which will vary for different examples;

and xij4 is the time by treatment interaction that represents the product of

xij2 and xij3. The interaction term β3 is of primary interest, because if it

differs significantly from zero then this indicates that the change over time in

the marginal means differs significantly between the two treatment groups.
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We consider the following data types, true correlation structures, and

specified values for time: (i)Conditional Poisson, with µij = exp(ηij), an

AR(1) structure, and xij3 = j for j = 1, . . . 6; (ii) Conditional Binomial with

all Nij = 1, with logit(µij) = ηij, a Markov structure, and xij3 = j for j =

1, 2, 3 and xij3 = (j − 2)× 3 for j = 4, 5, 6; (iii) Conditional Binomial, with

logit(µij/Nij) = ηij and Nij = 4, an AD(1) structure, and the same timings

used for simulation of Bernoulli data. We specified identical timings for the

Markov and AD(1) structures, so that the Markov structure is a special case

of the AD(1) structure, and is a correctly specified working structure when

the true structure is AD(1).

For each simulation scenario, we simulated 10000 data sets using our

software in R and Stata to compare quasi-least squares (QLS), a method in

the framework of GEE that allows for easy implementation of the Markov

structure (Shults and Chaganty 1998; Chaganty and Shults 1999), with ap-

plication of GEE when the working structure is an identity matrix but the

standard errors are adjusted for misspecification of the correlation structure

via application of a “sandwich” covariance matrix for estimation of the co-

variance matrix of β̂. GEE was implemented using geepack in R (Halekoh,

Hjsgaard, and Yan 2006) and using xtgee in Stata, while QLS was imple-

mented using the qlspack package in R and xtqls in Stata (Shults, Ratcliffe,

and Leonard 2007).

There were no simulation runs that resulted in a failure to converge for

either approach. Therefore, the power to test the hypothesis β3 = 0 with

type-one error of 0.05 was estimated as the proportion of 10000 simulation

runs that resulted in a p-value less than 0.05 (based on Wald’s test as im-
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plemented in each software package). Simulations were duplicated in both

Stata and R, with the exception of the conditional binomial example for

which QLS and GEE were only implemented in Stata, owing to the inability

of qlspack and geepack to fit a binomial model with Nj > 1. Assessment of

power for these two approaches allows us to compare correct specification of

the marginal means and correlation structure with ignoring the correlations,

but adjusting for misspecification of the correlation structure via application

of a sandwich covariance matrix. We specified a sandwich covariance matrix

for each approach, and also correctly specified the mean and link functions

that relate the mean and variance for each distribution, with one important

exception- we ignored the overdispersion that is present for all data types

except the Bernoulli. As described in Efron (1992), overdispersion is a com-

mon feature of count data; therefore, simulating data with overdispersion is

useful for assessing power under conditions that are likely to be encountered

in practice.

Table 1 displays the results for two conditions, when β3 differs from zero,

and when it is identically zero; the latter set of simulation results are impor-

tant to assess departures from a level of 0.05 for the test. Table 1 indicates

that correctly modeling the correlation structure with QLS yields a small

gain in power (that decreases as the sample size increases) over fitting GEE

with an identity working structure, but with adjusted standard errors. For

example, for group sizes of 20, the power for QLS versus GEE was 65.4 %

versus 60.5 %, respectively; however, for group sizes of 80, the power was

almost identical for QLS versus GEE (99.7 % versus 99.4 %, respectively).

This suggests that for smaller samples it can be important to correctly model
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the correlation structure, because even a small improvement in power that al-

lows us to reduce the sample size by a several subjects, can yield considerable

savings over the course of a clinical trial that involves expensive tests and

monitoring of the participants. The upper constraint for α displayed directly

beneath Table 1 were obtained using a grid search and (2.6) and (2.7) for the

conditional binomial and conditional Bernoulli, and a grid search and (2.9)

for the conditional Poisson. Other results (including estimation of percent-

age bias and mean-square error of the regression and correlation parameters)

are available on request.

4. DISCUSSION

The proposed algorithm for simulating overdispersed random variables

with specified marginal means and product correlations is straightforward to

implement, even for an increasingly large number of random variables. The

method constructs a likelihood for Y1, . . . , Yn based on assumptions of first-

order antedependence, the same distribution for Y1 and for Yj given Yj−1,

and linearity of the conditional expectations E(Yj|Yj−1). The key is to select

a conditional distribution for Yj given Yj−1 whose conditional expectation

coincides with the best linear predictor (Christensen 1997, p.108) of Yj given

Yj−1 (j = 2, . . . , n).

The algorithm requires specification of the marginal means and adjacent

intra-subject correlations Cj−1j(α), which induces in the discrete random

variables a decaying-product correlation structure that has been thoroughly

studied for continuous outcomes (Zimmerman and Nuñez-Antón 2010). The
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decaying-product structure includes several structures as special cases that

are plausible for the analysis of longitudinal data, including the AR(1),

Markov, generalized Markov, and AD(1). However, in contrast to other

available methods for simulation of binary data (Emrich and Piedmonte 1991;

Qaqish 2003), our approach cannot be used to simulate data with a corre-

lation structure that differs from the decaying-product form, including the

equicorrelated structure that has been recommended for cross-sectional stud-

ies with binary “clustered” data (Chaganty and Joe 2004, p.858).

It is also interesting to note that the algorithm in Section 2.3 has a long

history for the special case of Bernoulli data and an induced AR(1) struc-

ture. Zeger et al. (1985) implemented a maximum likelihood approach for

estimation of the parameters for the Conditional Binomial distribution, for

Cj−1j(α) = α; all Nj = 1; a logistic model for the marginal means; and

time-independent covariates, so that pj = p within a subject. Zeger et al.

(1985) did not mention that their assumed likelihood induces data with an

AR(1) structure; however, Liang and Zeger (1986) noted that they made use

of a Markov chain of order one with first lag autocorrelation α to simulate

binary data for Table 2 of Liang and Zeger (1986), and therefore presumably

implemented the algorithm in Section 2.3 to simulate binary data with an

AR(1) structure. Qaqish (2003) did not discuss a general correlation struc-

ture with form (2.4), but did consider the AR(1) structure and obtained the

conditional mean in (6) of Qaqish (2003) that determines the same likelihood

(but with time-varying covariates) that was considered by Zeger et al. (1985).

Jung and Ahn (2005) proposed a simple method for simulation of data with

an AR(1) structure that also follows from the likelihood assumed by Zeger et

14



al. (1985). In addition, as noted earlier, if we start with an assumed product

correlation structure and assumed conditional expectations that are also the

best linear predictors (Christensen 1997; Qaqish 2003), then the conditional

expectations will be of form (2.1).

Our approach is also similar to the method of Azzalini (1994) that as-

sumes first-order antedependence and can be applied to generate realizations

of Bernoulli random variables with specified marginal means and association

parameters. Heagerty (2002) extended the approach of Azzalini (1994) to al-

low for higher-order antedependence. However, Azzalini (1994) and Heagerty

(2002) modeled association via pairwise odds-ratios, while we model the as-

sociation via correlations, which allows for simulation of data with decaying

product correlations and has a more natural extension for discrete data that

are not binary.

Future work might focus on constructing additional likelihoods under as-

sumptions of the first order Markov property and linearity of the expectations

of the conditional distributions. Plans are also underway to implement the

proposed likelihoods for analysis of longitudinal discrete data.
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A. APPENDIX

A.1 Assumed Linear Expectations and Product Correlations

Assume product correlations (2.4) and linear conditional expectations

E (Yj | Hj−1 ) = µj +

j−1∑
k=1

bjk (Yk − µk) , (A.1)
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where Hj−1 = (Y1, . . . , Yj−1)
′. Then, using results from the discussion of best

linear prediction (Christensen 1987, Chapter 6) presented on p. 108 of Chris-

tensen (1997),

Σ[1 : j − 1, 1 : j − 1]Bj = Σ[1 : j − 1, j], (A.2)

where Σ is the assumed covariance matrix for (Y1, . . . , Yn) andBj = (bj1, . . . , bj j−1)
′.

Qaqish (2003) used the Choleski decomposition of Σ[1 : j − 1, 1 : j − 1]

to solve for Bj in (A.2), in order to construct multivariate distributions for

binary variables. We utilize the simple tri-diagonal form (Zimmerman and

Nuñez-Antón 2010) of the product covariance structure, to directly obtain

bj = Σ[1 : j − 1, 1 : j − 1]−1Σ[1 : j − 1, j]. (A.3)

The elements of Σ−1[1 : j − 1 1 : j − 1] are given by Σ−1[1, 1] = 1/(σ2
1(1−

C2
1,2); Σ

−1[k, k] = (1 − C2
k−1,k C

2
k,k+1)/(σ

2
k(1 − C2

k−1,k)(1 − C2
k,k+1)) for k =

2, . . . , j−2; Σ−1[k, k+1] = −Ck,k+1/(σk σk+1(1−C2
k,k+1) for k = 1, . . . , j−2;

Σ−1[j − 1, j − 1] = 1/(σj−1
2(1 − C2

j−2,j−1); and Σ−1[k, k′] = 0 for |k − k′| >

0. In addition, Σ[1 : j − 1, j] =
(
σ1σj

∏j−1
k=1Ck,k+1, σ2σj

∏j−1
k=2Ck,k+1, . . . ,

σj−1σjCj−1,j)
′ . Substitution for Σ[1 : j − 1, 1 : j − 1]−1 and Σ[1 : j − 1, j]

in (A.3) and some algebra then yields bj = (0, . . . , 0, bjj−1)
′ where bjj−1 =

σj/σj−1Cj−1,j. Substituting bj into (A.1) then yields E (Yj|Hj) with form

(2.1), so that we have the result.

A.2 Conditional Binomial

We specify the distribution of Y1 as binomial with µ1 = N1p1 and σ1
2=

N1p1q1, where q1 = 1 − p1. Then, the conditional distribution of Yj given

Yj−1 is specified as binomial with mean given by (2.1), with µj = Njpj and

σj
2 (j = 2, . . . , n) as obtained using (2.2), as follows. First, var(Yj | Yj−1) =
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Njp
∗
j(1−p∗j), where p

∗
j = pj+b∗j(Yj−1−Nj−1pj−1) for b

∗
j = Cj−1,jσj/(σj−1Nj).

We can then directly obtain E{var(Yj | Yj−1)}, substitute its value into (2.2),

and solve the resultant equation for σj
2 to obtain (2.5).

Next, in order for E (Yj | Yj−1) to be valid for the conditional binomial dis-

tribution, they must satisfy 0 < E (Yj | Yj−1) < Nj for Yj−1 ∈ {0, . . . , Nj−1} .

For Cj−1,j > 0 the maximum value of E (Yj | Yj−1) is obtained at Yj−1 =

Nj−1 and the minimum value is obtained at Yj−1 = 0. For Cj−1,j < 0 the

minimum value of E (Yj | Yj−1) is obtained at Yj−1 = Nj−1 and the maxi-

mum value is obtained at Yj−1 = 0. Since 0 < E (Yj | Yj−1) < Nj as long as

min {E (Yj | Yj−1)} > 0 and max {E (Yj | Yj−1)} < Nj, we can easily check

whether the constraints are satisfied for a particular set of parameter values

by first calculating E (Yj | Yj−1 = Nj−1) and E (Yj | Yj−1 = 0) , which are pro-

vided in (2.6) and (2.7), respectively. We can then check whether (2.6) and

(2.7) both take value between 0 and Nj recursively (j = 2, . . . , n).

A.3 Conditional Poisson

Here the distribution of Y1 is specified as Poisson with E(Y1) = µ1 = λ1.

Then, the conditional distribution of Yj given Yj−1 is specified as Poisson with

µj = λj and conditional mean given by (2.1) (j = 2, . . . , n). Then, since

the mean and variance are identical for the Poisson distribution, E{var(Yj |

Yj−1)} = E{E(Yj | Yj−1)} = λj; substitution into (2.2) then yields σj
2 in

(2.8).

In order for the conditional expectations E (Yj | Yj−1) to be valid for

the conditional Poisson distribution, they must satisfy E (Yj | Yj−1) > 0 for

Yj−1 ≥ 0. In order for this inequality to be satisfied for all Yj−1 ≥ 0 we

must specify Cj−1,j ≥ 0; then the minimum value of E (Yj | Yj−1) is obtained
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at Yj−1 = 0. Since E (Yj | Yj−1) > 0 as long as min {E (Yj | Yj−1)} > 0,

substituting Yj−1 = 0 yields the constraints (2.9) that must be satisfied in

order for the conditional Poisson distributions to be valid.

A.4 Example of a Constructed Distribution

[Table 1 about here.]

Using the probabilities displayed in Table E1, it is straightforward to

verify that ∑
y1

∑
y2

∑
y3

pr(y1, y2, y3) = 1,

so that the constructed distribution is valid. We can then show that

∑
y1

∑
y2

∑
y3

yj pr(y1, y2, y3) = µj (j = 1, 2, 3),

where µ1 = 2.4, µ2 = 0.4, and µ3 = 0.6. Furthermore,

∑
y1

∑
y2

∑
y3

yj
2 pr(y1, y2, y3)− µj

2 = σj
2 (j = 1, 2, 3),

where σ1
2 = 0.48, σ2

2 = 0.24, and σ3
2 = 0.43979058. Finally, we can verify

that(∑
y1

∑
y2

∑
y3

yjyk pr(y1, y2, y3)− µj µk

)
/ (σj σk) = corr(Yj, Yk),

where corr(Y1, Y2) = 0.20 = C1, 2; corr(Y2, Y3) = 0.30 = C2, 3; and corr(Y1, Y3)

= 0.06 = C1, 2C2, 3. The constructed distribution therefore has the expected

properties, based on Theorem 2.1 and Proposition 2.2, respectively.
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Table AE1
Example of a Constructed Distribution of Y1, Y2, Y3.

y1 y2 y3 pr(y1, y2, y3)

0 0 0 0.00458663
0 0 1 0.00256895
0 0 2 0.00035971
0 1 0 0.00016203
0 1 1 0.00023643
0 1 2 0.00008625
1 0 0 0.04675376
1 0 1 0.02618654
1 0 2 0.00366674
1 1 0 0.00648266
1 1 1 0.00945949
1 1 2 0.00345082
2 0 0 0.15387185
2 0 1 0.08618283
2 0 2 0.01206764
2 1 0 0.04408390
2 1 1 0.06432721
2 1 2 0.02346656
3 0 0 0.16097156
3 0 1 0.09015935
3 0 2 0.01262445
3 1 0 0.08298290
3 1 1 0.12108862
3 1 2 0.04417312
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